

Probing the evolution of solid microjets from grooved Sn samples and their impact on Asay foil and piezoelectric mass diagnostics using X-ray radiography

J.-R. Burie¹, A. Sollier^{1,2}, J.-M. Chevalier³, J. Auperin^{1,2}, T. Lerévérend¹, C. Aragoncillo de Mingo¹, B. Imbert¹, L. Youinou¹, H. Requardt⁴, D. J. Foster⁴, B. Lukic⁴

¹CEA, DAM , France

²Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, France

³CEA-CESTA, France

⁴European Synchrotron Radiation Facility, France

Introduction

1. Experimental conditions

Set-up Configuration Diagnostics

2. Ejection's physics

3. Ejecta and diagnostics interaction

4. Diagnostics response

research goals of our ESRF experiment

Frame of our work: shock waves in metal

Emergence of shock wave at free surface with defects → microjetting

disrupt measurements

damage nearby equipment

safety hazards

➔ Important to characterize the ejecta could

speed

mass value & repartition

Ejection's physics

Effect of initial surface geometry on jet's mass, morphology and velocity

Mass diagnostics

Interaction of jets with probes

Correlation of the response of the probes with a X-ray determined areal density distribution

12/03/2024

Experimental setup

Within the frame of Shock BAG

Performed on ID19 beam line

Gas gun

Cu projectile velocity ≈ 800 m/s

grooved Sn target → microjets

Diagnostics

synchrotron-based radiography

3 interlaced cameras for 16 bunches recording PDV for surface and ejecta speed measurements mass diagnostics

µAsay foils µLiF Piezo PIN

Experimental configuration

Sn target

Φ2.8 cm

Grooves

linear chevron, fly-cut and square profiles single or multiple

Diagnostics

Probes parallel to the groove In a single line with varying distances from the target

X ray beam along grooves

X-ray beam

Mass diagnostics description

Based on momentum conservation assumption

PIN:

electric field ⇔ pressure

µAsay & µLiF: measure of displacement with triature PDV system

µAsay: displacement ⇔ momentum µLiF: displacement ⇔ pressure 400 µm 500 µm steel foil 10,5 mm with LN crystal embedded Al thin mirror copper Al body layer Al body with PDV with PDV probe brass electrodes probe PIN µAsay μLiF

Radio overview

Ejection's physics

jet morphology

2,8 µs after shock arrival @ Sn surface

jet density

Impact on density repartition within the jet

2,8 µs after shock arrival @ Sn surface

jet speed

Impact on speed of the fastest ejecta

fly cut

1500 2000 speed m/s

1500 2000 speed m/s 2500 300

3000

3500

jet fragmentation

Fragmentation mechanism along the jet and lateral speed

J.-R. Burie et al., DyCoMaX 2024

Ejecta and diagnostics interaction

Areal mass density extraction from µAsay measurements

Measure of

ejecta and free surface velocities foil's speed

multiple chevron groove

Under momentum conservation hypothesis

Areal mass distribution calculation

$$V_{particules}(t) = \frac{1}{t - t_{éjection}} (d_{éjection} + d_{cible})$$

$$= \frac{1}{t - t_{éjection}} (d_{éjection} + \int_{t_{éjection}}^{t} V_{cible}(t) - dt)$$

$$MS_{ejectée} \quad (t) = M_{cible} \cdot \frac{\int_{0}^{V_{cible}(t)} t(V_{cible}) dV_{cible}}{\mathcal{d}_{ejection} - \int_{0}^{V_{cible}(t)} t(V_{cible}) dV_{cible}}$$

$$= M_{cible} \cdot \frac{-\int_0^t V_{cible}(t) dt + (t - t_{éjection}) \cdot V_{cible}(t)}{d_{éjection} + \int_0^t V_{cible}(t) dt - (t - t_{éjection}) \cdot V_{cible}(t)}$$

12/03/2024

Jet & probe interaction

Splashing effect

Parts of the incident ejecta are not aggregated but bounced on the foil \rightarrow impact on the mass momentum assumption

single chevron groove

Comparison between X-rays and probes areal mass densities

Ejecta areal mass density versus speed

X-rays: obtained from the optical density within the jet µAsay: calculated from the foil's speed assuming mass momentum conservation

12/03/2024

Diagnostics response

Correcting factor for µLiF

a correcting factor "a" has to be applied on PDV and displacement measure through shocked LiF

Commonly used value for 1D shock effect: a = 1.2669

a=1,2669

18

fly cut groove

Conclusion

This study allowed us to analyze

impact of the surface geometries on the ejecta jet formation

form, speed, density repartition

edge effects

fragmentation scheme

interaction with mass diagnostics

splash on foils

correlation between diagnostic response and jet density repartition

→ calculations in progress

It rises also a lot of interesting subjects

origin of the edge effects

what would be the impact of different shock strength

better understanding of the jet interaction with the diagnostic

are these effects similar with other materials, other surface geometries

. . .

Thank you